1. given the functions f(x) = 3x – 4 and g(x) = 4x + 10, find the value of x for which f(x) = g(x).

1. given the functions f(x) = 3x - 4 and g(x) = 4x + 10, find the value of x for which f(x) = g(x).
a. 2
b. -2
c.-6
d. -14

Related Posts

This Post Has 10 Comments

  1. [tex]f(x)+g(x)=-x+4[/tex]

    Step-by-step explanation:

    We have the functions, [tex]f(x)=3x-2[/tex] and [tex]g(x)=6-4x[/tex].

    It is required to find the sum of these functions.

    That is, [tex]f(x)+g(x)[/tex].

    On substituting the functions, we get,

    [tex]f(x)+g(x)=(3x-2)+(6-4x)[/tex]

    i.e. [tex]f(x)+g(x)=(3x-4x)+(6-2)[/tex]

    i.e. [tex]f(x)+g(x)=-x+4[/tex]

    Thus, the sum of the functions i.e. [tex]f(x)+g(x)=-x+4[/tex].

  2. -x+4 is the answer.

    Step-by-step explanation:

    We have given two functions.

    f(x) = 3x-2

    g(x) = 6-4x

    We have to find the addition of given two functions.

    f(x)+g(x) = ?

    Putting given values in above equation, we have

    f(x)+g(x) = (3x-2)+(6-4x)

    f(x)+g(x) = 3x-2+6-4x

    adding like terms ,we have

    f(x)+g(x) = (3-4)x+(6-2)

    f(x)+g(x) = (-1)x + (4)

    f(x)+g(x) = -x +4 which is the answer.

  3. f(x) = 3x - 2, g(x) = 6 - 4x

    f(x) + g(x) = (3x - 2) + (6 - 4x)

    = 3x - 2 + 6 - 4x       combine like terms

    = (3x - 4x) + (-2 + 6)

    = -x + 4

  4. N0 (f o g) x = 3x.

    Step-by-step explanation:

    If they are inverses of each other the f o g will equal x.

    f o g  =  2(3x +3/ (4x - 2)  + 3  /    4(3x + 3)/(4x - 2) - 3)

    =  2(3x + 3)+ 3(4x - 2)                4x - 2

         *    

                4x - 2                     4(3x + 3) - 3(4x - 2)

          6x + 12x

    =  

            12 - 6

    = 3x.

    So they are not inverses.

     

Leave a Reply

Your email address will not be published. Required fields are marked *