Calculate the energy of a photon having a wavelength in thefollowing ranges.(a) microwave, with λ =

Calculate the energy of a photon having a wavelength in thefollowing ranges.(a) microwave, with λ = 50.00 cmev(b) visible, with λ = 500 nmev(c) x-ray, with λ = 0.50 nmev

Related Posts

This Post Has 4 Comments

  1. you'd use the equation that establishes a relationship between  energy  and  wavelength, which looks like this

    e=h⋅cλ, where

    λ  - the wavelength of the photon; c  - the speed of light, usually given as  3⋅108m/s; h  -  planck's constant, equal to  6.626⋅10−34j s

    plug the value you were given for the energy of the photon in the above equation to get the wavelength

    e=h⋅cλ⇒λ=h⋅ce

    λ=6.626⋅10−34js⋅3⋅108ms−1.257⋅10−24j=1.581⋅10−1m

  2. 1. The frequency of green light that has a wavelength of the [tex]5.14 \times 10^-^7 m \ is \ 5.83 \times 10^1^4 Hz.[/tex]

    2. Wavelength of infrared radiation with frequency [tex]3.85 \times 10^1^2 Hz \ is \ 7.79 \times 10^-^5 m.[/tex]

    3. Energy of a photon with frequency [tex]7.85 \times 10^1^5 is \ 5.181 \times 10^-^1^8 J.[/tex]

    4. The energy of a photon having a wavelength of [tex]6.08 \times 10^-^7m \ is \ 3.25 \times 10^-^1^9J.[/tex]

    5. Wavelength of ultraviolet radiation having [tex]2.94 \times 10^-^8J \ is \ 6.73 \times 10^-^1^8m.[/tex]

    Explanation:

    The equation connecting wavelength, frequency and speed of electromagnetic radiation is

    c=ϑλ

    1. λ = [tex]5.14 \times 10^-^7m[/tex]

    [tex]c=3 \times 10^8 m/s[/tex]

    ϑ = c/λ = [tex]\frac{(3 \times ^8)}{(5.14 \times 10^-^7)} = 5.83 \times 10^1^4 Hz[/tex]

    2. ϑ = [tex]3.85 \times 10^1^2 Hz[/tex]

    λ= c/ϑ [tex]= \frac{ (3 \times 10^8)}{(3.85 \times 10^1^2 )} = 7.79 \times 10^-^5 m[/tex]

    3. E = h ϑ

    [tex]= 6.6 \times 10^-^3^4 \times 7.85 \times 10^1^5=5.181 \times 10^-^1^8J[/tex]

    4. E= hc/λ

    [tex]= \frac{ (6.6 \times 10^-^3^4 \times 3 \times 10^8)}{ (6.08 \times 10^-^7)}[/tex]

    [tex]=3.25 \times 10^-^1^9J[/tex]

    5. E=[tex]2.94 \times 10^-^8J[/tex]

    λ= hc/E

    [tex]= \frac{ (6.6 \times 10^-^3^4) \times 3 \times 10^8}{(2.94 \times 10^-^8)}[/tex]

    [tex]=6.73 \times 10^-^1^8m[/tex]

  3. (a) [tex]2.5\cdot 10^{-6}eV[/tex]

    The energy of a photon is given by:

    [tex]E=\frac{hc}{\lambda}[/tex]

    where

    [tex]h=6.63\cdot 10^{-34}Js[/tex] is the Planck constant

    [tex]c=3\cdot 10^8 m/s[/tex] is the speed of light

    [tex]\lambda[/tex] is the wavelength

    For the microwave photon,

    [tex]\lambda=50.00 cm = 0.50 m[/tex]

    So the energy is

    [tex]E=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{0.50 m}=4.0\cdot 10^{-25} J[/tex]

    And converting into electronvolts,

    [tex]E=\frac{4.0\cdot 10^{-25}J}{1.6\cdot 10^{-19} J/eV}=2.5\cdot 10^{-6}eV[/tex]

    (b) [tex]2.5 eV[/tex]

    For the energy of the photon, we can use the same formula:

    [tex]E=\frac{hc}{\lambda}[/tex]

    For the visible light photon,

    [tex]\lambda=500 nm = 5 \cdot 10^{-7}m[/tex]

    So the energy is

    [tex]E=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{5\cdot 10^{-7} m}=4.0\cdot 10^{-19} J[/tex]

    And converting into electronvolts,

    [tex]E=\frac{4.0\cdot 10^{-19}J}{1.6\cdot 10^{-19} J/eV}=2.5 eV[/tex]

    (c) [tex]2500 eV[/tex]

    For the energy of the photon, we can use the same formula:

    [tex]E=\frac{hc}{\lambda}[/tex]

    For the x-ray photon,

    [tex]\lambda=0.5 nm = 5 \cdot 10^{-10}m[/tex]

    So the energy is

    [tex]E=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{5\cdot 10^{-10} m}=4.0\cdot 10^{-16} J[/tex]

    And converting into electronvolts,

    [tex]E=\frac{4.0\cdot 10^{-16}J}{1.6\cdot 10^{-19} J/eV}=2500 eV[/tex]

  4. Answers:

    The energy [tex]E[/tex] of a photon is given by the following formula:

    [tex]E=h.f[/tex](1)

    Where:

    [tex]h=4.136(10)^{-15}eV.s[/tex] is the Planck constant

    [tex]f[/tex] is the frequency

    Now, the frequency has an inverse relation with the wavelength [tex]\lambda[/tex]:

    [tex]f=\frac{c}{\lambda}[/tex](2)

    Where [tex]c=3(10)^{8}m/s[/tex] is the speed of light in vacuum

    Substituting (2) in (1):

    [tex]E=\frac{hc}{\lambda}[/tex](3)

    Knowing this, let's begin with the answers:

    (a) Microwave: 50.00 cm

    For [tex]\lambda=50cm=0.5m[/tex]

    [tex]E=\frac{(4.136(10)^{-15} eV.s)(3(10)^{8}m/s)}{0.5m}[/tex]  

    [tex]E=\frac{1.24(10)^{-6}eV.m }{0.5m}[/tex]  

    [tex]E=2.48(10)^{-6}eV[/tex]  

    (b) Visible: 500 nm

    For [tex]\lambda=500nm=500(10)^{-9}m[/tex]

    [tex]E=\frac{(4.136(10)^{-15} eV.s)(3(10)^{8}m/s)}{500(10)^{-9}m}[/tex]  

    [tex]E=\frac{1.24(10)^{-6}eV.m }{500(10)^{-9}m}[/tex]  

    [tex]E=2.48 eV[/tex]  

    (c) X-ray: 0.5 nm

    For [tex]\lambda=0.5nm=0.5(10)^{-9}m[/tex]

    [tex]E=\frac{(4.136(10)^{-15} eV.s)(3(10)^{8}m/s)}{0.5(10)^{-9}m}[/tex]  

    [tex]E=\frac{1.24(10)^{-6}eV.m }{0.5(10)^{-9}m}[/tex]  

    [tex]E=2480 eV[/tex]  

    As we can see, as the wavelength decreases, the energy increases.

Leave a Reply

Your email address will not be published. Required fields are marked *