Condense the logarithmlog a + 6 log b Posted on October 23, 2021 By Iamjenng5028 2 Comments on Condense the logarithmlog a + 6 log b Condense the logarithm log a + 6 log b Mathematics
[tex]Use:\\lnx-lny=ln(\frac{x}{y})\\\\lnx+lny=ln(x\cdot y)\\\\lnx^y=y\cdot lnx[/tex][tex]ln5-lna+6lnb-6lnc=ln\frac{5}{a}+lnb^6-lnc^6=ln\frac{5}{a}+ln\frac{b^6}{c^6}\\\\=\boxed{ln\frac{5b^6}{ac^6}}\\\\\\where:a 0;\ b 0\ and\ c 0[/tex]Reply
[tex]Use:\\lnx-lny=ln(\frac{x}{y})\\\\lnx+lny=ln(x\cdot y)\\\\lnx^y=y\cdot lnx[/tex][tex]ln5-lna+6lnb-6lnc=ln\frac{5}{a}+lnb^6-lnc^6=ln\frac{5}{a}+ln\frac{b^6}{c^6}\\\\=\boxed{ln\frac{5b^6}{ac^6}}\\\\\\where:a 0;\ b 0\ and\ c 0[/tex]Reply
[tex]Use:\\lnx-lny=ln(\frac{x}{y})\\\\lnx+lny=ln(x\cdot y)\\\\lnx^y=y\cdot lnx[/tex]
[tex]ln5-lna+6lnb-6lnc=ln\frac{5}{a}+lnb^6-lnc^6=ln\frac{5}{a}+ln\frac{b^6}{c^6}\\\\=\boxed{ln\frac{5b^6}{ac^6}}\\\\\\where:a 0;\ b 0\ and\ c 0[/tex]
[tex]Use:\\lnx-lny=ln(\frac{x}{y})\\\\lnx+lny=ln(x\cdot y)\\\\lnx^y=y\cdot lnx[/tex]
[tex]ln5-lna+6lnb-6lnc=ln\frac{5}{a}+lnb^6-lnc^6=ln\frac{5}{a}+ln\frac{b^6}{c^6}\\\\=\boxed{ln\frac{5b^6}{ac^6}}\\\\\\where:a 0;\ b 0\ and\ c 0[/tex]