Example: Study the example on the right to help you complete the problem below. Solve the equation A= bh for h. 2 O h Ab 8 = (1/3)6x (3)8 = (3)(1/3)6*

Example: Study the example on the right to help you complete the problem below. Solve the equation A= bh for h. 2 O h Ab 8 = (1/3)6x (3)8 = (3)(1/3)6* multiplication property (3)8 = 6x simplify (3)8/6 = 6x/6 multiplication property (3)8/6 = x simplify simplify and symmetric property h = 2Alb O h = 2b/A he (1 b/A​

Related Posts

This Post Has 3 Comments

  1. Answer : The equation for 'h' is [tex]h=\frac{2A}{b}[/tex]

    Step-by-step explanation :

    The given equation is:

    [tex]A=\frac{1}{2}bh[/tex]

    Now we have to determine the equation for 'h'.

    [tex]A=\frac{1}{2}bh[/tex]

    Multiplying the equation by 2.

    [tex]2\times A=2\times \frac{1}{2}\times bh[/tex]

    on simplifying, we get:

    [tex]2\times A=bh[/tex]

    Dividing the equation by 'b'.

    [tex]\frac{2\times A}{b}=\frac{bh}{b}[/tex]

    [tex]\frac{2\times A}{b}=h[/tex]

    or,

    [tex]h=\frac{2A}{b}[/tex]

    Therefore, the equation for 'h' is [tex]h=\frac{2A}{b}[/tex]

  2. h = [tex]\frac{2A}{b}[/tex]

    Step-by-step explanation:

    Given

    A = [tex]\frac{1}{2}[/tex] bh ( multiply both sides by 2 to clear the fraction )

    2A = bh ( divide both sides by b )

    [tex]\frac{2A}{b}[/tex] = h

  3. The question is poorly formatted:

    Example: Study the example on the right to help you complete the problem below.  

    Solve the equation

    [tex]A= \frac{1}{2}bh[/tex] for h.  

    Options:

    [tex]h = \frac{2A}{b}[/tex]    [tex]h = \frac{2b}{A}[/tex]      [tex]h = \frac{b}{A}[/tex]     [tex]h = 2Ab[/tex]​

    Example:  

    [tex]8 = \frac{1}{3}6x[/tex]

    Multiplication property  

    [tex](3)8 = (3)(\frac{1}{3})6x[/tex]

    [tex](3)8 = 6x[/tex]

    Simplify: [tex](3)\frac{8}{6} = \frac{6x}{6}[/tex]  

    Multiplication property: [tex](3)\frac{8}{6} = x[/tex]

    Simplify: [tex]\frac{8}{2} = x[/tex]

    Simplify : [tex]4 = x[/tex]

    Symmetric property : [tex]x = 4[/tex]

    [tex]h = \frac{2A}{b}[/tex]

    Step-by-step explanation:

    Given

    [tex]A= \frac{1}{2}bh[/tex]

    Required

    Solve for h

    [tex]A= \frac{1}{2}bh[/tex]

    Multiplication property  

    [tex]2 * A= \frac{1}{2}bh * 2[/tex]

    [tex]2A = bh[/tex]

    Simplify

    [tex]\frac{2A}{b} = \frac{bh}{b}[/tex]

    [tex]\frac{2A}{b} = h[/tex]

    Symmetric property

    [tex]h = \frac{2A}{b}[/tex]

    Hence, the expression for h is:

    [tex]h = \frac{2A}{b}[/tex]

Leave a Reply

Your email address will not be published. Required fields are marked *