Example: Study the example on the right to help you complete the problem below. Solve the equation A= bh for h. 2 O h Ab 8 = (1/3)6x (3)8 = (3)(1/3)6* multiplication property (3)8 = 6x simplify (3)8/6 = 6x/6 multiplication property (3)8/6 = x simplify simplify and symmetric property h = 2Alb O h = 2b/A he (1 b/A
Answer : The equation for 'h' is [tex]h=\frac{2A}{b}[/tex]
Step-by-step explanation :
The given equation is:
[tex]A=\frac{1}{2}bh[/tex]
Now we have to determine the equation for 'h'.
[tex]A=\frac{1}{2}bh[/tex]
Multiplying the equation by 2.
[tex]2\times A=2\times \frac{1}{2}\times bh[/tex]
on simplifying, we get:
[tex]2\times A=bh[/tex]
Dividing the equation by 'b'.
[tex]\frac{2\times A}{b}=\frac{bh}{b}[/tex]
[tex]\frac{2\times A}{b}=h[/tex]
or,
[tex]h=\frac{2A}{b}[/tex]
Therefore, the equation for 'h' is [tex]h=\frac{2A}{b}[/tex]
h = [tex]\frac{2A}{b}[/tex]
Step-by-step explanation:
Given
A = [tex]\frac{1}{2}[/tex] bh ( multiply both sides by 2 to clear the fraction )
2A = bh ( divide both sides by b )
[tex]\frac{2A}{b}[/tex] = h
The question is poorly formatted:
Example: Study the example on the right to help you complete the problem below.
Solve the equation
[tex]A= \frac{1}{2}bh[/tex] for h.
Options:
[tex]h = \frac{2A}{b}[/tex] [tex]h = \frac{2b}{A}[/tex] [tex]h = \frac{b}{A}[/tex] [tex]h = 2Ab[/tex]
Example:
[tex]8 = \frac{1}{3}6x[/tex]
Multiplication property
[tex](3)8 = (3)(\frac{1}{3})6x[/tex]
[tex](3)8 = 6x[/tex]
Simplify: [tex](3)\frac{8}{6} = \frac{6x}{6}[/tex]
Multiplication property: [tex](3)\frac{8}{6} = x[/tex]
Simplify: [tex]\frac{8}{2} = x[/tex]
Simplify : [tex]4 = x[/tex]
Symmetric property : [tex]x = 4[/tex]
[tex]h = \frac{2A}{b}[/tex]
Step-by-step explanation:
Given
[tex]A= \frac{1}{2}bh[/tex]
Required
Solve for h
[tex]A= \frac{1}{2}bh[/tex]
Multiplication property
[tex]2 * A= \frac{1}{2}bh * 2[/tex]
[tex]2A = bh[/tex]
Simplify
[tex]\frac{2A}{b} = \frac{bh}{b}[/tex]
[tex]\frac{2A}{b} = h[/tex]
Symmetric property
[tex]h = \frac{2A}{b}[/tex]
Hence, the expression for h is:
[tex]h = \frac{2A}{b}[/tex]