Example: Study the example on the right to help you complete the problem below. Solve the equation A= bh for h. 2 O h Ab 8 = (1/3)6x (3)8 = (3)(1/3)6* multiplication property (3)8 = 6x simplify (3)8/6 = 6x/6 multiplication property (3)8/6 = x simplify simplify and symmetric property h = 2Alb O h = 2b/A he (1 b/A

Answer : The equation for 'h' is [tex]h=\frac{2A}{b}[/tex]

Step-by-step explanation :

The given equation is:

[tex]A=\frac{1}{2}bh[/tex]

Now we have to determine the equation for 'h'.

[tex]A=\frac{1}{2}bh[/tex]

Multiplying the equation by 2.

[tex]2\times A=2\times \frac{1}{2}\times bh[/tex]

on simplifying, we get:

[tex]2\times A=bh[/tex]

Dividing the equation by 'b'.

[tex]\frac{2\times A}{b}=\frac{bh}{b}[/tex]

[tex]\frac{2\times A}{b}=h[/tex]

or,

[tex]h=\frac{2A}{b}[/tex]

Therefore, the equation for 'h' is [tex]h=\frac{2A}{b}[/tex]

h = [tex]\frac{2A}{b}[/tex]

Step-by-step explanation:

Given

A = [tex]\frac{1}{2}[/tex] bh ( multiply both sides by 2 to clear the fraction )

2A = bh ( divide both sides by b )

[tex]\frac{2A}{b}[/tex] = h

The question is poorly formatted:

Example: Study the example on the right to help you complete the problem below.

Solve the equation

[tex]A= \frac{1}{2}bh[/tex] for h.

Options:

[tex]h = \frac{2A}{b}[/tex] [tex]h = \frac{2b}{A}[/tex] [tex]h = \frac{b}{A}[/tex] [tex]h = 2Ab[/tex]

Example:

[tex]8 = \frac{1}{3}6x[/tex]

Multiplication property

[tex](3)8 = (3)(\frac{1}{3})6x[/tex]

[tex](3)8 = 6x[/tex]

Simplify: [tex](3)\frac{8}{6} = \frac{6x}{6}[/tex]

Multiplication property: [tex](3)\frac{8}{6} = x[/tex]

Simplify: [tex]\frac{8}{2} = x[/tex]

Simplify : [tex]4 = x[/tex]

Symmetric property : [tex]x = 4[/tex]

[tex]h = \frac{2A}{b}[/tex]

Step-by-step explanation:

Given

[tex]A= \frac{1}{2}bh[/tex]

Required

Solve for h

[tex]A= \frac{1}{2}bh[/tex]

Multiplication property

[tex]2 * A= \frac{1}{2}bh * 2[/tex]

[tex]2A = bh[/tex]

Simplify

[tex]\frac{2A}{b} = \frac{bh}{b}[/tex]

[tex]\frac{2A}{b} = h[/tex]

Symmetric property

[tex]h = \frac{2A}{b}[/tex]

Hence, the expression for h is:

[tex]h = \frac{2A}{b}[/tex]