Home Mathematics Find the values of x and y in the figure Find the values of x and y in the figure Mathematics ReginapokornyOctober 22, 20218 CommentsFind the values of x and y in the figure [tex]Find the values of x and y in the figure [/tex]
[tex]x=79^{\circ}\ and\ y=101^{\circ}[/tex]Step-by-step explanation:In the given picture, a parallelogram PQRS is given with angle 101°.In a parallelogram opposite angles are equal.Since, y is opposite to 101°.Therefore y=101°Also, the sum of the adjacent angles of a parallelogram is 180°[tex]\\\Rightarrow\ x+101^{\circ}=180^{\circ}\\\Rightarrow\ x=180^{\circ}-101^{\circ}\\\Rightarrow\ x=79^{\circ}[/tex]Reply
x = 65, y = 115Step-by-step explanation:x and 2x - 15 are adjacent angles and supplementary, thus2x - 15 + x = 1803x - 15 = 180 ( add 15 to both sides )3x = 195 ( divide both sides by 3 )x = 65y and 2x - 15 are congruent ( alternate angles ), thusy = 2x - 15 = 2(65) - 15 = 130 - 15 = 115Reply
[tex]\frac{5}{y} = \frac{5 + 3 }{y + x}[/tex][tex]5(y + x) = y( 5 + 3)[/tex][tex]5y + 5x = 8y[/tex][tex]5x = 8y - 5y[/tex][tex]5x = 3y[/tex][tex]\frac{x}{y} = \frac{3}{5}[/tex][tex]x = 3[/tex][tex]y = 5[/tex]Reply
X=110 divided by 2=55 because x is half of the 110 . Since it’s quadratic inside the circle the opposite sides equals to 180 so 180-110=70 so Y =70Reply
x = 160°Step-by-step explanation:Angles in a line add up to 180°∴ 50° + y + 70° = 180°y = 180° - (50° + 70°) = 60°Angles in a quadrilateral add up to 360°Since angle x is equal to the other unknown angle;x = (360° - 40°) ÷ 2 = 160°Reply
[tex]x=79^{\circ}\ and\ y=101^{\circ}[/tex]
Step-by-step explanation:
In the given picture, a parallelogram PQRS is given with angle 101°.
In a parallelogram opposite angles are equal.
Since, y is opposite to 101°.
Therefore y=101°
Also, the sum of the adjacent angles of a parallelogram is 180°
[tex]\\\Rightarrow\ x+101^{\circ}=180^{\circ}\\\Rightarrow\ x=180^{\circ}-101^{\circ}\\\Rightarrow\ x=79^{\circ}[/tex]
x = 65, y = 115
Step-by-step explanation:
x and 2x - 15 are adjacent angles and supplementary, thus
2x - 15 + x = 180
3x - 15 = 180 ( add 15 to both sides )
3x = 195 ( divide both sides by 3 )
x = 65
y and 2x - 15 are congruent ( alternate angles ), thus
y = 2x - 15 = 2(65) - 15 = 130 - 15 = 115
x=55 y=125
Step-by-step explanation:
X= 110/2=55
if BC is 110, BAC=250
so Y=250/2=125
180° = x + (2x -15)
180°=3x-15
3x = 195
x =65°
x + y = 180°
65+ y= 180°
y = 115°
[tex]\frac{5}{y} = \frac{5 + 3 }{y + x}[/tex]
[tex]5(y + x) = y( 5 + 3)[/tex]
[tex]5y + 5x = 8y[/tex]
[tex]5x = 8y - 5y[/tex]
[tex]5x = 3y[/tex]
[tex]\frac{x}{y} = \frac{3}{5}[/tex]
[tex]x = 3[/tex]
[tex]y = 5[/tex]
y=180-50+70
y=60
X=110 divided by 2=55 because x is half of the 110 . Since it’s quadratic inside the circle the opposite sides equals to 180 so 180-110=70 so Y =70
x = 160°
Step-by-step explanation:
Angles in a line add up to 180°
∴ 50° + y + 70° = 180°
y = 180° - (50° + 70°) = 60°
Angles in a quadrilateral add up to 360°
Since angle x is equal to the other unknown angle;
x = (360° - 40°) ÷ 2 = 160°