1. (a^2 + ab – 3b^2) + (4a^2 – ab + b^2)
2. (7a^2–a+4)–(3a^2–4a–3)
3. (5e^2–e–7)–(-2e^2+3e+4)
Multiplying Polynomials
4. 4a(3x+5)
5. 6rs(2r^2+3rs)
6. 3x(5x^2–x+4)
7. (a+b)(2a–3b)
8. (z–2x)(z–2x)
9. (2y+3)(y^2+3y–6) 10.(e – f)(e^2 – 2ef + f^2)

## This Post Has 10 Comments

1. harleyandpope90 says:

How would we know.
Hope this helps!

2. kat122402 says:

all are a polynomial function and

1.the degree is 3 and number of term is 4

2. 1 and 3

3. 1 and 4/3

4. 2 and -4

5. 2 and 1

3. TheViperMlg23676 says:

12x² - 6x + 13

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to Right

Algebra I

Terms/Coefficients/Degrees

Step-by-step explanation:

Step 1: Set up

(9x² - 4x + 11) + (3x² - 2x + 2)

Step 2: Simplify

Combine like terms (x²):                     12x² - 4x + 11 - 2x + 2Combine like terms (x):                       12x² - 6x + 11 + 2Combine like terms (Z):                      12x² - 6x + 13

4. nnaomii says:

9.32/le4

Step-by-step explanation:

5. dezmarcus says:

$1.\\(4x^2+15x-3)-(-3x^2+5)\\=4x^2+15x-3+3x^2-5\\=7x^2+15x-8\leftarrow A.$

$2.\\-3f^2+4f-3+8f^2+7f+1\\=5f^2+11f-2\leftarrow C.$

$3.\\(2x^2+6x+1)+(-7x^2+2x-3)\\=2x^2+6x+1-7x^2+2x-3\\=-5x^2+8x-2\leftarrow B.$

$4.\\4x^2+3x-3\\\{4;\ 3;-3\}$

$5.\\6x^4+3x^3-2x^2+15x-14\\\{6;\ 3;-2;\ 15;-14\}\to5\leftarrow A.$

$6.\\-7x-5x^2+5\\\{-7\}\leftarrow D.$

$7.\\(2.5\cdot10^4)(4\cdot10^3)=2.5\cdot4\cdot10^{4+3}=10\cdot10^7\\=10^{1+7}=10^8=1\cdot10^8\leftarrow C.$

$8.\\2^2\cdot2^8=2^{2+8}=2^{10}\leftarrow B.$

13

Step-by-step explanation:

q-7 can go into 13q-91 thirteen times.

Set up the long division sign with the q-7 on the outside and the 13q-91 inside.

Then, notice that to get to 13, you multiply the q and 7 by 13. This gets both terms to 13q and 91, which cancel out the numbers inside the long division sign.

(1) A

(2) C

(3) B

(4) The coefficients are 4,3,-3.

(5) A

(6) D

(7) C

(8) B

Step-by-step explanation:

(1)

The given expression is

$(4x^2 + 15x - 3) - (-3x^2 + 5)$

Using distributive property.

$(4x^2 + 15x - 3) - (-3x^2) -( 5)$

$4x^2 + 15x - 3 + 3x^2 - 5$

On combining like terms.

$(4x^2+3x^2) + 15x +(- 3 - 5)$

$7x^2 + 15x-8$

Therefore, the correct option is A.

(2)

The given expression is

$-3f^2 + 4f - 3 + 8f^2 + 7f + 1$

On combining like terms.

$(-3f^2+ 8f^2) +( 4f + 7f )+(- 3 + 1)$

$5f^2 +11f -2$

Therefore, the correct option is C.

(3)

The given expression is

$(2x^2 + 6x + 1) + (-7x^2 + 2x - 3)$

Combined like terms.

$(2x^2-7x^2) + (6x+ 2x) + (1 - 3)$

$-5x^2 + 8x -2$

Therefore, the correct option is B.

(4)

The given expression is

$4x^2 + 3x - 3$

A number before variable terms are called coefficient of that term.

Therefore, the coefficients are 4,3,-3.

(5)

The given expression is

$6x^4 + 3x^3 - 2x^2 + 15x - 14$

It this polynomial, the number of terms is 5.

Therefore the correct option is A.

(6)

The given expression is

$-7x - 5x^2 + 5$

The coefficient to x is -7.

Therefore, the correct option is D.

(7)

The given expression is

$(2.5\cdot 10^4)(4\cdot 10^3)$

$(2.5\cdot 4)\cdot (10^4\cdot 10^3)$

Using product property of exponent.

$(10)\cdot 10^{4+3}$

$1\cdot 10^{1+4+3}$

$1\cdot 10^{8}$

Therefore, the correct option is C.

(8)

The given expression is

$2^2\cdot 2^8$

Using product property of exponent.

$2^{2+8}$

$2^{10}$

Therefore, the correct option is B.

8. mymyj1705 says:

972

Step-by-step explanation:

The first term is (9x)^3, so the coefficient of x is 9. Since the degree is 3, the second term must have a multiplier of (3 choose 1). 1458 / (3 choose 1) = 486.

486 / (9^2) = 6. Therefore, the coefficient of y must be 6. Since the second term is negative, the coefficient of y is also negative. Thus, this can be written as (9x-6y)^3. Solving for the xy^2 term gives us (3 choose 2) * 9 * 6^2 = $\boxed{972}$ or the third option.

9. spinshot13 says:

27x4−30x3+59x2−30x+22

Step-by-step explanation:

10. stephaniem0216 says:

c

Step-by-step explanation: