Home Mathematics Solve without a calculator log_5(240)-log_5(75)-log_5(80) Solve without a calculator log_5(240)-log_5(75)-log_5(80)Mathematics Achasengnou792October 23, 20213 CommentsSolve without a calculator log_5(240)-log_5(75)-log_5(80)
The answer is b i’m sure[tex]Given t is a transversal crossing parallel line m and n, m a. 60° b. 160° c. 100° d. 40° e. 140°[/tex]Reply
Log₅ 240-log₅75-log₅ 80=log₅ (240/75)-log₅ 80= (log_a b- log_a c=log_a (b/c) ):log₅3.2 - log₅80= log₅(3.2/80)= (log_a b- log_a c=log_a (b/c) ) log₅0.04=log₅ 4/100=log₅ 1/25=log₅ 1 - log₅ 25= (log_a 1=0)0-log₅25=-log₅25=-log₅5²=x ⇔ x=-2 (log_a a^n=n) log₅ 240-log₅75-log₅ 80=-2Reply
d
gimmee one of those gold crowns!
~coco
The answer is b i’m sure
[tex]Given t is a transversal crossing parallel line m and n, m a. 60° b. 160° c. 100° d. 40° e. 140°[/tex]
Log₅ 240-log₅75-log₅ 80=
log₅ (240/75)-log₅ 80= (log_a b- log_a c=log_a (b/c) )
:log₅3.2 - log₅80=
log₅(3.2/80)= (log_a b- log_a c=log_a (b/c) )
log₅0.04=
log₅ 4/100=
log₅ 1/25=
log₅ 1 - log₅ 25= (log_a 1=0)
0-log₅25=
-log₅25=
-log₅5²=x ⇔ x=-2 (log_a a^n=n)
log₅ 240-log₅75-log₅ 80=-2