Use the given information to find the value of x. use 3.14 for t. c=56.52 feet

Use the given information to find the value of x. use 3.14 for t. c=56.52 feet

Related Posts

This Post Has 5 Comments

  1. (3x+8)=(5x-20). The angles are vertical so it's equal. You then used the solved for x to solve (3x+8)+(5x+4y)=180 to solve for y. This is because these two angles are supplementary so they add to 180. We assume x is already known from the first equation. 

    Solving the first equation:
    2x=28
    x=14

    Second equation: 3*14+8+5*14+4y=180
    42+8+70+4y=180
    4y=180-120
    4y=60
    y=15

  2. Yes! There is enough information to solve for x. x equals 23 degrees because we know that one angle measure is 23, and that this is a right triangle so another angle measure must be 90. Since we know 2 of the angle measures, we can find the third by subtracting from 180. Seeing as the mid-line bisects this angle and creates a shared side for the 2 triangles, we know the triangles must be congruent. We could also explain this using SAA if needed. To put it short, though, there are several ways we can prove that x=23.

  3. Solution:

    1)

    Statement                                                     Reason

    x  ║t                                                             Given

    m∠16=m∠7                                                  Given

    m∠16=m∠1                                                   Corresponding angles

    m∠7=m∠1                                                      Substitution

    k║w                                                               Alternate exterior angles equal

                                                                        (Property of parallel lines)

    2)Part A:

    Sum of angles in any triangle is 180 degrees.

    m∠BAC+m∠ABC+m∠BCA= 180

    Substituting the values :

    4x+10+12x-6+3x+5=180

    Adding like terms :

    19x+9=180

    19x=171

    x=9.

    Part B:

    Substituting x value :

    m∠BAC=4x+10=4(9)+10=46

    m∠ABC=12x-6=12(9)-6=102

    m∠BCA=3x+5=3(9)+5=32.

    Part C:

    m∠1=180-46=134

    m∠2=180-102=78.

    m∠3=180-32=148.

    Part D:

    Angle BAC and angle FAC are angle made on straight line and are linear .Such angles are called linear pairs.

    Part E:

    Angle BCE and Angle DCA are vertically opposite angles.

    .

  4. ∠1 = ∠3  [vertical angles]
    5x - 20 = 3x + 8
    5x - 3x = 8 + 20
    2x = 28
    x = 14
    m∠1 = 3x + 8 = 3*14 + 8 = 50°
    m∠3 = m∠1 = 50°

    ∠1 + ∠2 = 180°    [supplementary angles]
    m∠2 = 180 - m∠1 = 180 - 50 = 130°

    m∠4 = m∠2 = 130°   [vertical angles]

    (5x + 4y) = 130     [x = 14]
    5*14 + 4y = 130
    70 + 4y = 130
    4y = 130 - 70
    4y = 60
    y = 60/4
    y = 15

    x = 14
    y = 15
    m∠1= 50°
    m∠2= 130°
    m∠3= 50°
    m∠4= 130°

  5. Because g is the centroid of the triangle abc, then ag = bg= cg 
    here cg = 3x+7 and bg= 6x
    3x+7 = 6x
    7=6x-3x
    7=3x
    x=7/3

    for the question to be "workable", af is probably the median, with f on bc 

    remember the centroid cuts the median in the ratio of 2: 1, or ag: gf = 2: 1
      then fg: af= 1: 3 
    (x+8)/(9x-6) = 1/3
      9x - 6 = 3x + 24
      6x = 30
      x = 5 

Leave a Reply

Your email address will not be published. Required fields are marked *