Skip to content

  • Home
  • Mathematics
  • English
  • History
  • Chemistry
  • Biology
  • Law
  • Medicine
  • Business
  • Toggle search form

What is the product of -2x^3+x-5 and x^3-3x-4?(a) show your work(b) is the product of -2x^3 +x-5 and x^3-3x-4 equal to the product of x^3 -3x-4 and

Posted on October 22, 2021 By Allstar976 6 Comments on What is the product of -2x^3+x-5 and x^3-3x-4?(a) show your work(b) is the product of -2x^3 +x-5 and x^3-3x-4 equal to the product of x^3 -3x-4 and

What is the product of -2x^3+x-5 and x^3-3x-4? (a) show your work
(b) is the product of -2x^3 +x-5 and x^3-3x-4 equal to the product of x^3 -3x-4 and -2x^3 +x-5? Explain your answer

Mathematics

Post navigation

Previous Post: Social and mental welfare is what agency?
Next Post: Which of the above beak depth vs time graphs represent the change in finch beak depth that would occur during a sustained drought?

Comments (6) on “What is the product of -2x^3+x-5 and x^3-3x-4?(a) show your work(b) is the product of -2x^3 +x-5 and x^3-3x-4 equal to the product of x^3 -3x-4 and”

  1. nsald6973 says:
    October 23, 2021 at 8:17 am

    FULL ANSWERS WITH STEPS

    (a) Finding the product of -2x^{3}+x-5 and x^{3}-3x-4
    (-2x^{3}+x-5)(x^{3}-3x-4)
    =-2x^{3}(x^{3}-3x-4)+x(x^{3}-3x-4)-5(x^{3}-3x-4)
    =-2x^{3}*x^{3}-2x^{3}*(-3x)-2x^{3}*(-4)+x*x^{3}+x*(-3x)+x*(-4)-5*x^{3}-5*(-3x)-5*(-4)
    =-2x^{6}+6x^{4}+8x^{3}+x^{4}-3x^{2}-4x-5x^{3}+15x+20
    =-2x^{6}+6x^{4}+x^{4}+8x^{3}-5x^{3}-3x^{2}-4x+15x+20
    =-2x^{6}+7x^{4}+3x^{3}-3x^{2}+11x+20

    (b)
    1)Finding the product of -2x^{3}+x-5 and x^{3}-3x-4
    (-2x^{3}+x-5)(x^{3}-3x-4)
    =-2x^{3}(x^{3}-3x-4)+x(x^{3}-3x-4)-5(x^{3}-3x-4)
    =-2x^{3}*x^{3}-2x^{3}*(-3x)-2x^{3}*(-4)+x*x^{3}+x*(-3x)+x*(-4)-5*x^{3}-5*(-3x)-5*(-4)
    =-2x^{6}+6x^{4}+8x^{3}+x^{4}-3x^{2}-4x-5x^{3}+15x+20
    =-2x^{6}+6x^{4}+x^{4}+8x^{3}-5x^{3}-3x^{2}-4x+15x+20
    =-2x^{6}+7x^{4}+3x^{3}-3x^{2}+11x+20
    ∴ (-2x^{3}+x-5)(x^{3}-3x-4)=-2x^{6}+7x^{4}+3x^{3}-3x^{2}+11x+20  ...(1)

    2) Finding the product of x^{3}-3x-4 and -2x^{3}+x-5
    (x^{3}-3x-4)(-2x^{3}+x-5)
    =(-2x^{3}+x-5)(x^{3}-3x-4)
    =-2x^{6}+7x^{4}+3x^{3}-3x^{2}+11x+20
    ∴ (x^{3}-3x-4)(-2x^{3}+x-5)=-2x^{6}+7x^{4}+3x^{3}-3x^{2}+11x+20  ...(2) [Using (1)]

    Now, 
    (-2x^{3}+x-5)(x^{3}-3x-4)=(-2x^{3}+x-5)(x^{3}-3x-4)
    ⇒ (-2x^{3}+x-5)(x^{3}-3x-4)=-2x^{6}+7x^{4}+3x^{3}-3x^{2}+11x+20  [Using (1)]
    ⇒ (-2x^{3}+x-5)(x^{3}-3x-4)=(x^{3}-3x-4)(-2x^{3}+x-5)    [Using (2)]

    ∴ Product of -2x^{3}+x-5 and x^{3}-3x-4 = Product of x^{3}-3x-4 and -2x^{3}+x-5

    Hope these may help you. 

    If you have any doubt, then you can ask me in the comments. 

    Reply
  2. lllizzas says:
    October 23, 2021 at 10:09 am

    Answer is in a ph[tex]^{}[/tex]oto. I can't attach it he[tex]^{}[/tex]re, but I uploaded it to a fi[tex]^{}[/tex]le hosting. link below! Good Luck!

    bit.[tex]^{}[/tex]ly/3a8Nt8n

    Reply
  3. Expert says:
    October 23, 2021 at 4:05 pm

    both equations and proportions are better.

    Reply
  4. bks53 says:
    October 23, 2021 at 5:34 pm

    -2x³+ x-5x³-3x-4

    Collect like terms by calculating the sum or difference of their coefficients.

    -2x³-5x³ ---> -2-5x³

    Calculate the sum or difference.

    -7x³

    x-3x

    If a term doesn't have a coefficient, it is considered that the coefficient is 1.

    1x-3x

    Collect like terms by subtracting their coefficients.

    1-3x

    Calculate sum or difference. 

    -2x

    Final answer.

    -7x³+-2x-4

    No, the products are not equal because the product of the second equation is 9x³-3x+x-5.

    Reply
  5. Expert says:
    October 24, 2021 at 1:46 am

    answer: download photomath it's legit.

    step-by-step explanation:

    [tex]Part 2: use the trigonometric ratios 30° and 60° to calculate and label the remaining sides of a bd[/tex]

    Reply
  6. randallmatthew5665 says:
    October 24, 2021 at 5:00 am

    FULL ANSWERS WITH STEPS

    (a) Finding the product of -2x^{3}+x-5 and x^{3}-3x-4
    (-2x^{3}+x-5)(x^{3}-3x-4)
    =-2x^{3}(x^{3}-3x-4)+x(x^{3}-3x-4)-5(x^{3}-3x-4)
    =-2x^{3}*x^{3}-2x^{3}*(-3x)-2x^{3}*(-4)+x*x^{3}+x*(-3x)+x*(-4)-5*x^{3}-5*(-3x)-5*(-4)
    =-2x^{6}+6x^{4}+8x^{3}+x^{4}-3x^{2}-4x-5x^{3}+15x+20
    =-2x^{6}+6x^{4}+x^{4}+8x^{3}-5x^{3}-3x^{2}-4x+15x+20
    =-2x^{6}+7x^{4}+3x^{3}-3x^{2}+11x+20

    (b)
    1)Finding the product of -2x^{3}+x-5 and x^{3}-3x-4
    (-2x^{3}+x-5)(x^{3}-3x-4)
    =-2x^{3}(x^{3}-3x-4)+x(x^{3}-3x-4)-5(x^{3}-3x-4)
    =-2x^{3}*x^{3}-2x^{3}*(-3x)-2x^{3}*(-4)+x*x^{3}+x*(-3x)+x*(-4)-5*x^{3}-5*(-3x)-5*(-4)
    =-2x^{6}+6x^{4}+8x^{3}+x^{4}-3x^{2}-4x-5x^{3}+15x+20
    =-2x^{6}+6x^{4}+x^{4}+8x^{3}-5x^{3}-3x^{2}-4x+15x+20
    =-2x^{6}+7x^{4}+3x^{3}-3x^{2}+11x+20
    ∴ (-2x^{3}+x-5)(x^{3}-3x-4)=-2x^{6}+7x^{4}+3x^{3}-3x^{2}+11x+20  ...(1)

    2) Finding the product of x^{3}-3x-4 and -2x^{3}+x-5
    (x^{3}-3x-4)(-2x^{3}+x-5)
    =(-2x^{3}+x-5)(x^{3}-3x-4)
    =-2x^{6}+7x^{4}+3x^{3}-3x^{2}+11x+20
    ∴ (x^{3}-3x-4)(-2x^{3}+x-5)=-2x^{6}+7x^{4}+3x^{3}-3x^{2}+11x+20  ...(2) [Using (1)]

    Now, 
    (-2x^{3}+x-5)(x^{3}-3x-4)=(-2x^{3}+x-5)(x^{3}-3x-4)
    ⇒ (-2x^{3}+x-5)(x^{3}-3x-4)=-2x^{6}+7x^{4}+3x^{3}-3x^{2}+11x+20  [Using (1)]
    ⇒ (-2x^{3}+x-5)(x^{3}-3x-4)=(x^{3}-3x-4)(-2x^{3}+x-5)    [Using (2)]

    ∴ Product of -2x^{3}+x-5 and x^{3}-3x-4 = Product of x^{3}-3x-4 and -2x^{3}+x-5

    Hope these may help you. 

    If you have any doubt, then you can ask me in the comments. 

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Categories

  • Advanced Placement (AP)
  • Arts
  • Biology
  • Business
  • Chemistry
  • Computers and Technology
  • Engineering
  • English
  • French
  • Geography
  • German
  • Health
  • History
  • Law
  • Mathematics
  • Medicine
  • Physics
  • SAT
  • Social Studies
  • Spanish
  • World Languages

© 2021 studyqas

Powered by PressBook WordPress theme