Home Mathematics What is the simplified form of 3 startroot 135 endroot? What is the simplified form of 3 startroot 135 endroot?Mathematics Stodd9503October 23, 20214 CommentsWhat is the simplified form of 3 startroot 135 endroot?
[tex]\bf 3\sqrt{135}~~ \begin{cases} 135=&3\cdot 3\cdot 15\\ &3^2\cdot 15 \end{cases}\implies 3\sqrt{3^2\cdot 15}\implies 9\sqrt{15}[/tex]Reply
[tex]9 \sqrt{135}[/tex]Step-by-step explanation:Express 135 as a product of 15 and 9:[tex]135=15*9[/tex]So:[tex]3\sqrt{15*9}[/tex]Now, use the following property:[tex]\sqrt[n]{a*b} =\sqrt[n]{a}\hspace{3} \sqrt[n]{b}[/tex]Therefore:[tex]3\sqrt{15} \sqrt{9}[/tex]Since the square root of 9 is 3, the simplified form of [tex]3\sqrt{135}[/tex]:[tex]3\sqrt{15} \sqrt{9}=3*3\sqrt{15} =9\sqrt{15}[/tex]Reply
[tex]\bf 3\sqrt{135}~~ \begin{cases} 135=&3\cdot 3\cdot 15\\ &3^2\cdot 15 \end{cases}\implies 3\sqrt{3^2\cdot 15}\implies 9\sqrt{15}[/tex]
So is you asking to help you simplify this
[tex]9 \sqrt{135}[/tex]
Step-by-step explanation:
Express 135 as a product of 15 and 9:
[tex]135=15*9[/tex]
So:
[tex]3\sqrt{15*9}[/tex]
Now, use the following property:
[tex]\sqrt[n]{a*b} =\sqrt[n]{a}\hspace{3} \sqrt[n]{b}[/tex]
Therefore:
[tex]3\sqrt{15} \sqrt{9}[/tex]
Since the square root of 9 is 3, the simplified form of [tex]3\sqrt{135}[/tex]:
[tex]3\sqrt{15} \sqrt{9}=3*3\sqrt{15} =9\sqrt{15}[/tex]
Que sayco sos vos va ma