Home Mathematics What is the simplified form of 3 startroot 135 endroot? What is the simplified form of 3 startroot 135 endroot?Mathematics Stodd9503October 23, 20214 CommentsWhat is the simplified form of 3 startroot 135 endroot?

[tex]\bf 3\sqrt{135}~~ \begin{cases} 135=&3\cdot 3\cdot 15\\ &3^2\cdot 15 \end{cases}\implies 3\sqrt{3^2\cdot 15}\implies 9\sqrt{15}[/tex]Reply

[tex]9 \sqrt{135}[/tex]Step-by-step explanation:Express 135 as a product of 15 and 9:[tex]135=15*9[/tex]So:[tex]3\sqrt{15*9}[/tex]Now, use the following property:[tex]\sqrt[n]{a*b} =\sqrt[n]{a}\hspace{3} \sqrt[n]{b}[/tex]Therefore:[tex]3\sqrt{15} \sqrt{9}[/tex]Since the square root of 9 is 3, the simplified form of [tex]3\sqrt{135}[/tex]:[tex]3\sqrt{15} \sqrt{9}=3*3\sqrt{15} =9\sqrt{15}[/tex]Reply

[tex]\bf 3\sqrt{135}~~ \begin{cases} 135=&3\cdot 3\cdot 15\\ &3^2\cdot 15 \end{cases}\implies 3\sqrt{3^2\cdot 15}\implies 9\sqrt{15}[/tex]

So is you asking to help you simplify this

[tex]9 \sqrt{135}[/tex]

Step-by-step explanation:

Express 135 as a product of 15 and 9:

[tex]135=15*9[/tex]

So:

[tex]3\sqrt{15*9}[/tex]

Now, use the following property:

[tex]\sqrt[n]{a*b} =\sqrt[n]{a}\hspace{3} \sqrt[n]{b}[/tex]

Therefore:

[tex]3\sqrt{15} \sqrt{9}[/tex]

Since the square root of 9 is 3, the simplified form of [tex]3\sqrt{135}[/tex]:

[tex]3\sqrt{15} \sqrt{9}=3*3\sqrt{15} =9\sqrt{15}[/tex]

Que sayco sos vos va ma