Where are the x-intercepts for f(x) = −4cos(x − pi over 2) from x = 0 to x = 2π? (?

Where are the x-intercepts for f(x) = −4cos(x − pi over 2) from x = 0 to x = 2π? (?

Related Posts

This Post Has 3 Comments

  1. Consider the function [tex]f(x)=-4cos(x- \frac{ \pi }{2})[/tex]

    the x-intercepts of the graph of f, are the zeros of f, that is the solutions of f(x)=0.

    so we solve 

    [tex]-4cos(x- \frac{ \pi }{2})=0[/tex]

    [tex]cos(x- \frac{ \pi }{2})=0[/tex]

    at this point we ask ourselves, keeping the unit circle in mind, "cosine of what is 0?"

    In the unit circle, from 0 to 2π radians,

    cos 90° = cos (π/2) rad = 0

    and

    cos 270° = cos (3π/2) rad = 0

    this means that 

    i)
    [tex]x- \frac{ \pi }{2}= \frac{ \pi }{2}[/tex]

    [tex]x= \pi[/tex]

    and 

    ii)
    [tex]x- \frac{ \pi }{2}= 3\frac{ \pi }{2}[/tex]

    [tex]x=3\frac{ \pi }{2} +\frac{ \pi }{2}=2 \pi[/tex]

    ii) also, check that [tex]f(0)=-4cos(0- \frac{ \pi }{2})=-4cos(-\frac{ \pi }{2})[/tex] is also 0, because cos (-pi/2)= cos (-90°)=cos 270°=0

     

    x=0, x=π, and x=2π

  2. Recall that to get the x-intercepts, we set the f(x) = y = 0, thus

    [tex]\bf \stackrel{f(x)}{0}=-4cos\left(x-\frac{\pi }{2} \right)\implies 0=cos\left(x-\frac{\pi }{2} \right)
\\\\\\
cos^{-1}(0)=cos^{-1}\left[ cos\left(x-\frac{\pi }{2} \right) \right]\implies cos^{-1}(0)=x-\cfrac{\pi }{2}
\\\\\\
x-\cfrac{\pi }{2}=
\begin{cases}
\frac{\pi }{2}\\\\
\frac{3\pi }{2}
\end{cases}[/tex]

    [tex]\bf -------------------------------\\\\
x-\cfrac{\pi }{2}=\cfrac{\pi }{2}\implies x=\cfrac{\pi }{2}+\cfrac{\pi }{2}\implies x=\cfrac{2\pi }{2}\implies \boxed{x=\pi }\\\\
-------------------------------\\\\
x-\cfrac{\pi }{2}=\cfrac{3\pi }{2}\implies x=\cfrac{3\pi }{2}+\cfrac{\pi }{2}\implies x=\cfrac{4\pi }{2}\implies \boxed{x=2\pi }[/tex]

  3. The function is [tex]f(x)=-4cos( x-\frac{ \pi }{2} )[/tex], 

    the x-intercepts of the function are the values of x, for which f(x)=0.

    So we solve [tex]-4cos( x-\frac{ \pi }{2} )=0[/tex], where x∈[0,2π]

    [tex]-4cos( x-\frac{ \pi }{2} )=0[/tex]

    [tex]cos( x-\frac{ \pi }{2} )=0[/tex]

    CosA=0, when A is [tex]\frac{ \pi }{2} k[/tex], where k is an integer.

    -------------------------------------------------------------------------------------------------
    check the unit circle, the cosine, that is the first coordinate, is 0 at 90°, that is π/2, at 270°, that is π/2*3
    -------------------------------------------------------------------------------------------------

    thus, 

    [tex]x-\frac{ \pi }{2}[/tex] is an element of [tex]\frac{ \pi }{2} k[/tex], that is

    [tex]{...-2*\frac{ \pi }{2}, -1*\frac{ \pi }{2}, 0*\frac{ \pi }{2}, 1*\frac{ \pi }{2}, 2*\frac{ \pi }{2}, 3*\frac{ \pi }{2}...}[/tex]

    that is

    [tex]{...- \pi , -\frac{ \pi }{2}, 0, \frac{ \pi }{2}, \pi , \frac{ 3\pi }{2}, 2 \pi ...}[/tex]

    this means that x is an element of:

    [tex]{...- \pi+\frac{ \pi }{2} , -\frac{ \pi }{2}+\frac{ \pi }{2}, 0+\frac{ \pi }{2}, \frac{ \pi }{2}+\frac{ \pi }{2}, \pi+\frac{ \pi }{2} , \frac{ 3\pi }{2}+\frac{ \pi }{2}, 2 \pi+\frac{ \pi }{2} ...}[/tex]

    so x is an element of

    [tex]{...-\frac{ \pi }{2} , 0, \frac{ \pi }{2}, \pi , \frac{ 3\pi }{2} , 2 \pi,...}[/tex]

    Since x can be from x=0 to x= 2π, 

    then the solution set is {0, π/2, π, 3π/2, 2π}

    {0, π/2, π, 3π/2, 2π}

    [tex]Where are the x-intercepts for f(x) = −4cos(x − pi over 2) from x = 0 to x = 2π?[/tex]

Leave a Reply

Your email address will not be published. Required fields are marked *