The function is [tex]f(x)=-4cos( x-\frac{ \pi }{2} )[/tex],
the x-intercepts of the function are the values of x, for which f(x)=0.
So we solve [tex]-4cos( x-\frac{ \pi }{2} )=0[/tex], where x∈[0,2π]
[tex]-4cos( x-\frac{ \pi }{2} )=0[/tex]
[tex]cos( x-\frac{ \pi }{2} )=0[/tex]
CosA=0, when A is [tex]\frac{ \pi }{2} k[/tex], where k is an integer.
------------------------------------------------------------------------------------------------- check the unit circle, the cosine, that is the first coordinate, is 0 at 90°, that is π/2, at 270°, that is π/2*3 -------------------------------------------------------------------------------------------------
thus,
[tex]x-\frac{ \pi }{2}[/tex] is an element of [tex]\frac{ \pi }{2} k[/tex], that is
Consider the function [tex]f(x)=-4cos(x- \frac{ \pi }{2})[/tex]
the x-intercepts of the graph of f, are the zeros of f, that is the solutions of f(x)=0.
so we solve
[tex]-4cos(x- \frac{ \pi }{2})=0[/tex]
[tex]cos(x- \frac{ \pi }{2})=0[/tex]
at this point we ask ourselves, keeping the unit circle in mind, "cosine of what is 0?"
In the unit circle, from 0 to 2π radians,
cos 90° = cos (π/2) rad = 0
and
cos 270° = cos (3π/2) rad = 0
this means that
i)
[tex]x- \frac{ \pi }{2}= \frac{ \pi }{2}[/tex]
[tex]x= \pi[/tex]
and
ii)
[tex]x- \frac{ \pi }{2}= 3\frac{ \pi }{2}[/tex]
[tex]x=3\frac{ \pi }{2} +\frac{ \pi }{2}=2 \pi[/tex]
ii) also, check that [tex]f(0)=-4cos(0- \frac{ \pi }{2})=-4cos(-\frac{ \pi }{2})[/tex] is also 0, because cos (-pi/2)= cos (-90°)=cos 270°=0
x=0, x=π, and x=2π
Recall that to get the x-intercepts, we set the f(x) = y = 0, thus
[tex]\bf \stackrel{f(x)}{0}=-4cos\left(x-\frac{\pi }{2} \right)\implies 0=cos\left(x-\frac{\pi }{2} \right) \\\\\\ cos^{-1}(0)=cos^{-1}\left[ cos\left(x-\frac{\pi }{2} \right) \right]\implies cos^{-1}(0)=x-\cfrac{\pi }{2} \\\\\\ x-\cfrac{\pi }{2}= \begin{cases} \frac{\pi }{2}\\\\ \frac{3\pi }{2} \end{cases}[/tex]
[tex]\bf -------------------------------\\\\ x-\cfrac{\pi }{2}=\cfrac{\pi }{2}\implies x=\cfrac{\pi }{2}+\cfrac{\pi }{2}\implies x=\cfrac{2\pi }{2}\implies \boxed{x=\pi }\\\\ -------------------------------\\\\ x-\cfrac{\pi }{2}=\cfrac{3\pi }{2}\implies x=\cfrac{3\pi }{2}+\cfrac{\pi }{2}\implies x=\cfrac{4\pi }{2}\implies \boxed{x=2\pi }[/tex]
The function is [tex]f(x)=-4cos( x-\frac{ \pi }{2} )[/tex],
the x-intercepts of the function are the values of x, for which f(x)=0.
So we solve [tex]-4cos( x-\frac{ \pi }{2} )=0[/tex], where x∈[0,2π]
[tex]-4cos( x-\frac{ \pi }{2} )=0[/tex]
[tex]cos( x-\frac{ \pi }{2} )=0[/tex]
CosA=0, when A is [tex]\frac{ \pi }{2} k[/tex], where k is an integer.
-------------------------------------------------------------------------------------------------
check the unit circle, the cosine, that is the first coordinate, is 0 at 90°, that is π/2, at 270°, that is π/2*3
-------------------------------------------------------------------------------------------------
thus,
[tex]x-\frac{ \pi }{2}[/tex] is an element of [tex]\frac{ \pi }{2} k[/tex], that is
[tex]{...-2*\frac{ \pi }{2}, -1*\frac{ \pi }{2}, 0*\frac{ \pi }{2}, 1*\frac{ \pi }{2}, 2*\frac{ \pi }{2}, 3*\frac{ \pi }{2}...}[/tex]
that is
[tex]{...- \pi , -\frac{ \pi }{2}, 0, \frac{ \pi }{2}, \pi , \frac{ 3\pi }{2}, 2 \pi ...}[/tex]
this means that x is an element of:
[tex]{...- \pi+\frac{ \pi }{2} , -\frac{ \pi }{2}+\frac{ \pi }{2}, 0+\frac{ \pi }{2}, \frac{ \pi }{2}+\frac{ \pi }{2}, \pi+\frac{ \pi }{2} , \frac{ 3\pi }{2}+\frac{ \pi }{2}, 2 \pi+\frac{ \pi }{2} ...}[/tex]
so x is an element of
[tex]{...-\frac{ \pi }{2} , 0, \frac{ \pi }{2}, \pi , \frac{ 3\pi }{2} , 2 \pi,...}[/tex]
Since x can be from x=0 to x= 2π,
then the solution set is {0, π/2, π, 3π/2, 2π}
{0, π/2, π, 3π/2, 2π}
[tex]Where are the x-intercepts for f(x) = −4cos(x − pi over 2) from x = 0 to x = 2π?[/tex]